Chapter 9

Scientific Discovery
Processes in Children,
Adults, and Machines

M
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Allen Newell's primary research goals were so fundamental, and his ac-
complishments so prodigious, that two fields—cognitive psychology and
artificial intelligence {Al)—trace their ancestry to his pioneering work with
Herbert Simon in the late 1950s. Newell and Simon started investigating
the nature of intelligence by using very simple domains: closed-form games
and puzzles. Forty years later, their successes are indicated by the fact that
we are able to use the current versions of the methodologies and theories
that they invented to investigate the cognitive processes that support sci-
entific discovery: a domain that represents one of the pinnacles of human
intetligence. The early tensions and mutual interactions between psycho-
logical approaches and artificial intelligence approaches remain in the
studies of scientific discovery: In psychology, the research goal is to deter-
mine just how people manage 1o do science, whereas in Al the goal is to
build systems that can make discoveries. This work has produced an accu-
mulating body of evidence that there can really be a “science of science ”
As a result, the old view of scientific discovery—that it is mystical, ineffable,
wranscendent, unknowable—is giving way to both a descriptive and a syn-
thetic science of discovery. The descriptive side is mainly from cognitive
psychology, and the synthetic side is mainly from machine learning. Early
interest in the psychology of science can be waced to Bruner, Goodnow,
and Austin {1956), Wason (1960}, and Simon (1966, 1973), among others.
The staie of the art as of a dozen years ago is summarized in Tweney,
Doherty, and Mynatt (1981). The more recent resurgence of interest in
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the “cognitive science of science” can be atuibuted to Simon and his
colieagues (Cheng & Simon, 1892; Kulkarni & Simon, 1988; Langley, Sk
mon, Bradshaw, & Zytkow, 1987; Qin & Simon, 1990; Valdez-Perez, Simon,
& Murphy, 1992). But psychologists were not the first, nor the only, sci-
entists to argue for the ultimate knowability of the process of scientific
discovery More than 50 vears ago, Einstein wrote: "The whole of science
is nothing more than a refinement of every day thinking” (Physics & reality,
1936, reprinted in Einstein, 1950, p. 59). He also wrote, "The scientific
way of forming concepts differs from that which we use in our daily life,
not basically, but merely in the more precise definition of concepts and
conclusions; more painsiaking and systematic choice of experimental ma-
terial, and greater logical economy (“The common language of science,”
1641, reprinted in Einstein, 1950, p. 88).

So the basic premise—that scientific thinking imvolves some of the same
processes used by ordinary folks—is not new. What is new is what we have
learned in recent years about the psychological process underlying scien-
tific discovery: the “precise definitions,” “systematic choices,” and “logical
economy” of which Einstein speaks. These are the processes that empower
scientific discovery, and that is what I address in this chapter.

There are five parts to this chapter: In the first part, I describe a framework
for characterizing the discovery process. Next, I describe the psvchological
processes used by adulis and children when they are engaged in scientific
discovery. I summarize the results of empirical studies in my lab, as well as a
few studies by others who have also been looking at developmental differ-
ences in scientific discovery processes. In the third part of the chapter, I say
a bit about machine discovery systems. These systems continue the two-fac-
eted approach that manifested iself in the earliest days of artificial intelli-
gence. Some are computational models of human discovery processes,
whereasothersare aspecies of machine learning systems designed tosupport
scientific discovery by machines. In the fourth section I attempt to charac-
terize different approaches within cognitive science to understanding dis-
covery, and finally, in the fifth part, I talk about the fronters of this research.

SCIENTIFIC DISCOVERY AS DUAL SEARCH

Qur research is based on the idea that scientific discovery isa type of problem
solving in which there are two problem spaces: a space of hypotheses and a
space of experiments. Both of these problem spaces require heuristics for
constraining search. This dual search notion is an extension of Simon and
Lea's (1974) generalized rule inducer. In our model, hypotheses correspond
to GRI's rules, and experiments correspond to instances. In order further
specify this very general characterization, Kevin Dunbar and I proposed a
framework that we called SDDS, for “scientific discovery as dual search.” The
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SDDS framework (Fig. 9.1) depicts the relationship among the component
processes that ceordinate the dual search (Kiahr & Dunbar, 1988).

The three top-level components control the entire process: First, you
have to Search the Hypothesis Space, then you have to Test that Hypothesis,
and then vou have to Exaluate the Evidence in order 1o decide whether
the cumulagive evidence—as well as other considerations—uwarrants accept-
ance, rejection, or continued consideration of the current hypothesis That
is a preuy comentional view of the discovery process Now let’s descend
a level, and look more carefully at how hypotheses are generated.

There are wvo subcomponents for Search Hypothesis Space. One com-
ponent generates the broad scope for the hypotheses, and the second
component refines it and further specifies it. Because we use Minsky's
“frame” notion, for representing hypotheses, we show this as first Gener-
ating a Frame and then Assigning Slot Values.

Where do these initial frames and their associated slot values come
from? We propose two different types of sources for new hypotheses. One
source is priot knowledge stored in memon, and the other source is the
external world The two different sources are evoked in both Generate
Frame and in Assign Slot Values.

Generate Frame has two subcomponents corresponding to the two ways
that a frame may be generated.

Evoke Frame is a search of memory for information that could be used to
constructa frame. Prior knowledge playsan important role here. In cognitive
psychology, several mechanisms have been proposed to account for the way
in which initial hypotheses are generated. These include memory search,
analogical mapping, remindings, and view instantiation (Dunbar & Schunn,
1990; Gentner, 1983; Gick & Holyoak, 1983; Klahr & Dunbar, 1988; Ross,
1984; Shrager, 1987). Each of these mechanisms emphasizes a different
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aspect of the way in which search in the hypothesis space is initated.
Although the SDDS framework doesn't have anvthing to add 1o these views,
thereis an important distinction between this form of frame generation and
the other process under the Generate Frame node: Induce Frame.

Induce Frame generates a new frame by induction over a series of
outcomes (Holland, Holyoak, Nisbett, & Thagard, 1986). It includes two
subprocesses: The first Generates an Outcome, and the second Generalizes
over the results of that {and other} outcomes to produce a frame.

This first process is of particular interest, for it calls for an experiment
to be run (via E-Space Move). But this is an odd sort of experiment: It is
not testing any hypothesis, because we don't have one yet. We are still in
the part of the model that is searching for a hypothesis

By including E-Space Move in this portion of the framework, we ac-
knowledge the imporiance of running so-called “experiments” in the ab-
sence of a clear theory. This corresponds to pretheoretical obsenvations
and measuremenis of how one thing affects another with no clearcut
theory. This is not the conventionally assigned role for experimentation,
but we all know how important it is.

Notice also that the E-Space Move occurs in two additional parts of the
framework: not onl in the senice of inducing a frame, but also under
Assign Slot Values, when the theory has been partiaily specified, and one
is seeking a bit more constraint on the theory. E-Space Move also occurs
under Test Hypothesis in is “rraditional role” in the evaluation of fully
specified hypotheses By calling this 2 “move” in a "space” we emphasize
the fact that the decision about what kind of data to collect, or what kind
of observation to make in a problem-solving task that requires constrained
search in a very large space.

If we move back up to the distinction berween Generate Frame and
Assign Siot Values, we can see that the two processes correspond to major
and minor moves in the hypothesis space. Generate Frame involves the
creation of a new hypothesis that may involve entirely new structural rela-
tions among its elements, whereas Assign Slot Values takes the structure—
the frame, that is—as given, and refines some of its unresolved elements.

Once again, the location of E-Space Move reflects the fact that much
of the experimentation that takes place within a paradigm is not of the
grand hypothesis testing type, but rather the more data-driven attempt to
induce a new theory, or to refine an existing theory by discovering a better
set of slot values.

Let me summarize the main points of our theoretical orientation. Sci-
entific discovery is comprised of three main components:

1. Searching the hypothesis space. The process of generating new hypothe-
ses is a type of problem solving in which the initial state consists of some
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knowledge about a domain, and the goal state is a hypothesis that can
account for some or all of that knowledge in a more concise or universal
form Once generated, hypotheses are evaluated for their initial plausibility.
Expertise plays a role here, as subjects’ familiarity with a domain tends to
give them strong biases about what is plausible in the domain. Plausibility,
in turn, affects the order in which hypotheses are evaluated: Highly likely
hypotheses tend to be tested before unlikely hypotheses (Klayman & Ha,
1987; Wason, 1968). Furthermore, subjects may adopt different experi-
mental strategies for evaluating plausible and implausible hypotheses.

2. Searching the experiment space. One of the most important constraints
on this search is the need to produce experiments that will yield interpret-
able outcomes. For human discovery systems, this requires domain-general
knowledge about one's own infornation-processing limitations, as well as
domain-specific knowledge about the pragmatic constraints of the particu-
lar discovery context. As we will see, there are important developmental
differences in people’s ability to constrain search in the experiment space.

8 Fualuating evidence In contrast to the binary feedback provided to
subjects in the typical psychology experiment, real-world evidence evalu-
ation is not very straightforward. Relevant features must first be extracted,
potential noise must be suppiessed or corrected, and the resulting internal
representation must be compared with earlier predictions When people
are reasoning about real world context, their prior knowledge imposes
strong theoretical biases These biases influence not only the initial strength
with which hypotheses are held—and hence the amount of disconfirming
evidence necessary to refute them-—but aiso the featuies in the evidence
that will be atended to and encoded

Fach of these three components is a potential soutce of developmental
change, and most psychologists have studied them in isolation. But such
decomposition begs the very question of interest: the coordination of search
in two spaces. We wanted to uy a different approach. We wanted to study
discovery behavior in situations that required coordinated search in both the
experiment space and the hypothesis space. In order to do this, we set up
laboratory situations that were designed to place subjects in various pasts of this
framework and then looked at how they managed the dual search process.

LABORATORY INVESTIGATIONS OF SCIENTIFIC
REASONING

Given this goal of studying scientific reasoning in the psychology lab, and
given our additional goal of addressing some developmental questions,
and inspired by earlier work with Jeff Shrager (Shrager & Klahr, 1986) we
decided to study scientific discovery by using the device shown in Fig. 9.2a.
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FIG 92 BigTrk keypad.

We used a computer-controlled toy robot tank called BigTrak. I is a
battery-operated programmable self-contained vehicle, about 2 frlong. The
functions on the BigTrak keypad interface are depicted in Fig. 92 The
basic execution cvcle involves first clearing the memory with the CLR key
and then entering a series of up to 16 instructions, each consisting of a
function key ({the command) and a one- or two-digit number (the argu-
ment}. The five command keys are T, move forward; i, move backward;
«, rotate left, —, rotate right; and FIRE. When the GO key is pressed,
BigTrak executes the program. For example, suppose you pressed the
following series of keys:

CLR 75 ¢~ 71 8~ 15 FIRE 24 8 GO

When the GO key was pressed, BigTrak would move forward 5 ft, rotate
counterclockwise 42 degrees {corresponding to 7 minutes on an ordinary
clock face), move forward 3 fi, rotate clockwise 90 degrees, fire (its “laser
cannon”} twice, and back up 8 ft.

ED: 1 LINE SHORT



8 SCIENTIFIC DISCOVERY PROCESSES M
Procedure

Qur procedure had three phases. In the first, subjects were introduced to
BigTrak and instructed on the use of each basic command . Subjects were
insuructed in how to generate verbal protocols. During this phase, the RPT
kev was not visible. Subjects were trained to criterion on how to write a
series of commands to accomplish a specified maneuver. The end of this
phase corresponded to a scientist having a basic amount of knowledge
about a domain.

In the second phase, subjects were shown the RPT key. They were told
that it required a numeric parameter {N), and that there could be only
one RPT N in a program. They were told that their task was to find out
how RPT worked by writing programs and observing the results. This
corresponded to a new problem in the domain: an unresoived question
in an otherwise familiar context.

Finally, in the third phase, subjects could formulate hypotheses about
RPT and run experiments 1o tes: those hypotheses. This required decisions
about hypotheses and decisions about experiments. Subjects were never,
told whether or not they had discovered how RPT worked. They had to
decide when to terminate search

The sk has several properties that make it appropriate for studying
scientific discovery in the laboratory:

1. Prior knowledge can influence initial hypotheses as well as the
strength with which subjects hold them.

HU

Subjects have to design and evaluate their own experiments.

3. The mapping between experimental outcomes and hypotheses is non
trivial

4. We do not tell subjects whether or not they have in discovered a

triee hypothesis That is for them to decide.

-

5. The task is interesting and challenging for a wide range of ages

Hypothetical Behavior

What would you do, if faced with this problem? What kind of scientific
reasoning would you use, if asked to figure out how the RPT key worked?
Figure 9.3 shows a hypothetical sequence of hypotheses, predictions, and
experimental outcomes.

Hypothesis x (Hx) says that when you put in a RPT and a number, the
whole program repeats that many times. That turns out to be a very popular
hypothesis. Many subjects start out with this one, or something very similar
o1t

ED: 1 LINE SHORT
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Your first BigTrak Experiments

Hx: RPTN repeats the entire program N times.
Hy: RPT N repeats the Nth step once.

| Et: T1RPT1 |
Hx prediction: T2
Hy prediction: T2
BT's behavior: T2

[ E2:T1 FIRE2{ 1RPT2 |

Hx prediction: T1 FIRE2 &1 T1 FIRE2 | 1
Hy prediction: T1 FIRE2 {1 FIRE?2

BT's behavior: T1 FIRE2 11 FIRE2 | 1

FIG 93 Hipothetenl behavior in BigTrak task

Hypothesis v (Hy) is a littte odd: it says that RPT N takes the Nth step
in the program and repeats it one more time. That is not a very popular
hypothesis. Very [ew subjects start out with it.

What about experiments? What kind of program would you write in
order to test your hypotheses? Suppose you want to start simple, just to
see what might happen So you write Experiment 1: (11 RPT 1). Although
this is a simple and easy to obsere experiment, it is not very informative,
because if Hx is right, BigTrak will go forward two times, but it will do the
same thing if Hy is right. So this experiment can’t discriminate between
the two hypotheses. (This experiment might not be a total loss if BigTrak
did something inconsistent with both hypotheses, but it doesn’t)

How about Experiment 2: T 1 FIRE 21 1 RPT 2.
Now the two hypotheses make distinctive predictions:

1FIRE2 [ 1.

Hx predicts | 1FIRE 24 17
1 1FIRE 2

Hy predicts T 1FIRE 2

So Experiment 2 is critical with respect to the two hypotheses. It also
has some nice properties; is pretty short, so you can keep track of what is
going on, and it has easily distinguishable components, so each piece of
behavior is highly informative.
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So you enter the program shown in E2, and you run it. BigTrak goes
like this:

T1FIRE2LI1FIRE 211

Which is not what either theory predicted.

Now you have to ook carefully at the behavior, and, if you are very
discerning, you notice that it repeated the last two steps. You alse notice
that you used a 2 as the value of N. If vou are really on the ball here, you
hypothesize that RPT N repeats the last N instructions one time And that's
the way the original BigTrak really worked.

So now you have discovered how RPT works: It repeats the last N in-
structions one time. And vou did it with only three hypotheses and 1wo
experiments.

Performance: Adults Versus Children

How did our subjects do? In one of our studies (Dunbar & Klahy, 1959)
we used two groups of subjects: Carnegie Mellon University {CMU) un-
dergraduates, and children between the ages of 8 and 11 years. Table 9.1
shows the overall results Recall that the RPT key takes the N instructions
preceding the RPT instruction and it repeats that sequence one moie
time. It's a pretty nonintuitive function, and it was not easy to discover.

Children’s success rate was very low. Only 2 of 22 children were successful,
although 12 of the unsuccessful children were sure they had discovered the
correct rule, and they terminated their experiments quite satisfied with their
discovery. In contrast, nearly all of the adults discovered the correct rule. But
it was nota tzivial task for them. In fact, with respect toaverage time, numbey
of hypotheses, and number of experiments, the adults were notvery different
from the children. The explanatoen for these vastly different success rates
must lie ata deeper level. We need to look more closely at the nature of the
hypothesis space and the experiment space,

Table 9 2 iists the more common hypotheses that subjects proposed in
order of decreasing popularity or plausibility. Recall that the correct rule
is number 5: Repeat the last N steps once. On the right side of the table

TABLE 9.
Overall Performance of Children and Adulis on BigTmk Task
Adults Children
Soivers 19 of 20 2 ol 22
Menn time 20 min 20 min
Number of hypotheses 46 33
Number of programs I8 13
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TABLE 92
Common Hypotheses {in Decieasing Order of Populnrin or Plausibility)

REE N tefls Biglrak o Rule of N
Repeat the entire program & 1imes Counter
Repear the last step NV times Counter
Repeat the subsequent steps N times Counter
Repeat the entire progmam once nit

Repeat the last Vsieps once Selector
Repent the Mb step once Selector
Repeat the first M sieps once Selector
Repear the entre progrmm fN) times. Counter

hypotheses are classified according to the role that they assign to the
parameter that goes with the RPT command, shown here as “the role of
N." In hypotheses 1, 2, 3, and 8, N counts the number of repetitions. We
call these Counter hypotheses. In hypotheses 3, §, and 7, N determines
which segment of the program will be selected to be repeated again. We
call these Selector hypotheses. This distinction, between Counters and
Selectors, tums out to be a very useful distinction in our subsequent ex-
periments. Search in the BigTrak hypothesis space can imvolve local search
among Counters or among Selectors, or it can involie more farranging
search between counter frames and selector frames.

What about the BigTrak experiment space? How can we characterize it?
By one reckoning, it is enormous: For example, there are over 5" distinct
programs that subjects could write. However we have found that we can
adequately characterize the experiment space in terms of just two parame-
ters. The first is A—the length of the program preceding the RPT. The
second is the value of N—the argument that RPT takes. Because both
parameters must be less than or equal to 13, there are 225 "cells” in the A-N
space The regions and their general properties are depicted in Fig. 9.4

We have divided the E-sspace inio three regions, according to their
general informativeness with respect to alternative hypotheses. Rather than
go into details, I'll just remind you about the earlier example in which
some experiments were very poor at distinguishing among competing theo-
ries, whereas others were very effective. The most important thing to note
is that region 2 is particularly informative. This is where the program
length is greater than the value of N.

This analysis of the H-space and the E-space revealed a couple of inter-
esting things about how subjects went about this task. We found that there
were two distinct types of subjects, with fundamentally different strategies.
We distinguished between the two groups on the basis of how much in-
formation they had when they changed from a counter frame to a selector
frame. If they made the switch without having seen the result of a region
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[

FO 4 AT 3N FIRE2 RPT2

Lambda 4

LT 15 RPT 4
N

FD 4 AT30 FIRE2 LT 5 APT1

Reglon 1: Poor discriminating power.

Reglon 2: Maximally disctiminates among
all of the common hypotheses. Can
distingulsh selectors from counters,

and which selector or counter.

Region 3: Confusing for selector rules,
because N gets truncated to X and a
sequence of experiments that varies N
has no effect,

FIG. 94, BigTmk experiment space

2 experiment, then we called them "Theorists,” because they could not
have based their decision on conclusive experimental evidence. On the
other hand, if they made the switch from Counters to Selectors only after
running region 2 experiments, then we called them “Experimenters.” (By
the way, this analysis only makes sense for the adults, because so few
children proposed selectors )

The two kinds of strategies were accompanied by other differences
(shown in Table 9.3} Experimenters took twice as long to discover how RPT
worked; they explored much more of the experiment space, and they
conducted many more experiments without any active hypothesis. That is,
they spent a lot of time down in the lower left-hand region of the SDDS
framework, as they ran experiments in order to generate a data pattern over
which they could induce a frame.
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TABLE 93
Performance Differences Bemeen Theorists
and Experimenters on BigIrk Task

Theprists Experimenters
Defining propern Smte selector frame with-  State selector frame only
out sufficient evidence afer sufficien: evidence
Time {min) 1§ 25
Total experiments 93 1B+
Experiments without hypotheses og 6.1
Comments aboul experiment space 3.9 09
E-space cells used 57 99

This tendency to suspend the hypotheses testing mode while attempting
to discover some kind of regularity in the data suggested to us that we
needed to find out a fot more about how subjects searched the experiment
space, and about how different goals might influence that search. We also
began 1o look at developmental differences in some of the key components
of the SDDS model. As a developmentalist, T was particularly interested in
addressing two [ong-standing disputes over the developmental course of
scientific reasoning skills:

1. The domain-specific or domain-general debate asks whether there are
any general, domain-independent rules used in scientific reasoning, or
whether all developmental improvements can be attribuied to domain-spe-
cific acquisitions. Of course, the question is not limited to scientific rea-
soning skills: it pervades all of cognitive development. It is analogous 10
the distinction in Al between weak methods and knowledge-rich approaches.
Like most of the dichotomies in psychology, this one should not be over-
emphasézed, because it is not a clear—cut distinction. But developmentalists
devote a lot of energy to arguing about it, so I wanted to address it in my
work.

2. The child-as-scientist debate asks whether or not it makes sense to
describe the young child as a scientist. Some folks say, “yes, of course,”
and others say, “obviously not.” Unfortunately, one can find empirical
support for each position. On the one hand, results of formal studies, as
well as abundan: everyday experience, provide evidence that trained sci-
entists, and even untrained adults, commenly outperform children on a
variety scientific reasoning tasks {Kuhn, 1989). On the other hand, the
empirical literature on scientific reasoning shows that adults demonstrate
systematic and serious flaws in their reasoning, whereas young children
are capable of surprisingly competent reasoning about hypotheses testing
and experimentation (Brewer & Samarapungavan, 1991; Schauble, 1990,
Vosniadou & Brewer, 1992),
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It is clear that a one-bit answer to either of these questions wili be
inadequate. The questions have to be addressed in more depth We decided
to recast the questions in terms of the components of the SDDS framework.
In particular, we decided to use the BigTrak paradigm in such a way that
we could focus on developmental differences in the heuristics used to
constrain search in the experiment space,

The BT Microworld

a
For this study we moved from the original BigTrak toy to a computer
microworld called BT. The toy tank became an animated “rocket ship” icon,
and the BigTrak keypad became a screen display activated by pointing and
clicking with a mouse (see Klahr, Fay, & Dunbar, 1993, for details) We
explored the effect of domain-specific knowledge by manipulating the
plausibility of hypotheses. Our goal was to investigate the extent to which
prior knowledge—as manifested in hypothesis plausibility—influenced how

people designed experiments and how they interpreted the results of those-

experiments.

Procedure. The study had three phases. The first and third phases were
the same as in the previous study. Subjects learned about all the normal
keys and were trained to criterion on getting BT to move around the
screen . In the second phase, the RPT key was introduced as before. Subjects
were told that their task was to find cut how RPT worked by writing at
least three programs and observing the results. But then we changed the
procedure a bit, by suggesting one way that RPT might work. The experi-
menter said: “One way that RPT might work is™: and then we stated one
of four hypotheses listed next. Then we told subjects to write at least three
programs to see if the repeat key reaily did work the way we had suggested,
or some other way. The entire session lasted approximately 45 minutes.

Throughout the study, we used only four rules for BT. The two popular,
or plausible hypotheses were the two Counters:

A: Repeat the entire program N times.
B: Repeat the last step N times.

In contrast, there were two hypotheses that subjects were uniikely to
propose. These are the two Selectors:

C: Repeat the N'th step once.
D: Repeat the last N steps once.

EQ -
work ;St_n@,



338 RLAMR

TABLE 94
Design of BT Experimenc
Specific Hypotheses for Each Given-Actual Condition

Artual Rule
Gijven
Hypothesis Counler Selector
Counter B: Repent iast siep N iimes A: Repeat entire program N times
A: Repeat entire program N times D: Repeat the last N steps once
THEQRY REFINEMENT THEORY REPLACEMENT
Selecior D: chefw‘t the last step N steps once C: Repeat step N once.
A: Repent entire program N dmes D: Repeat the last A steps once
THEORY REPLACEMENT THEORY REFINEMENT

Design. The design is shown in Table 9.4 We provided each subject
with an initial hypothesis about how RPT might work. The Given hypothesis
was always wrong. BT was always set to work according to some rule other
than the Given rule. We called that the Actual rule. Both the Given and
Actual could be either plausible (i.e, a Counter) or implausible (i.e., a
Selector). In Counter — Counter and Selector — Selector conditions, the
Given hypothesis was only “somewhat” wrong, in that it was from the same
frame as the way that RPT actually worked In Counter -3 Selecior and
Selector — Counter conditions, the Given was “very” wrong, in that it came
from a different frame than the Actual rule. The subjects’ task in the
former situation corresponded to theory refinement, whereas in the latter
situation it corresponded to theory replacement.

Subiects

We used four different groups of subjects, Carnegie Mellon (CM) under-
graduates, Community College (CC) students, “sixth” graders (a mixed class
of fifth to seventh graders, mean age 11 years), and third graders {mean age
9 years). CMs were mainly science or engineering majors, whereas the CCs
had little training in mathematics or physical sciences. Chiidren came
primarily from academic and professional families. Most of the third graders
had about 6 months of LOGO instruction. Note that CCs had less program-
ming experience than the third graders.

Results. The proportion correct for each group in each condition is
shown in Fig. 9.5. As we expected, domain-specific knowledge—manifested
in expectations about what “repeat” might mean in this context—played
an important role. Regardless of what the Given hypothesis was, subjects
found it easier to discover Counters (81%) than Selectors (35%).
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Counter -» Counter
Counter - Selector
Selector -» Counter
Selector -» Selector

109

KSEN

Proportion Discovering Hule

Grade 3 Grade 6

FIG. 9.5 Percenmge conrect

There was also a main effect for group: The corvect rule was discovered
by 83% of the CMs, 63% of the CCs, 33% of the sixth gradess, and 33% of
the third graders. This group effect is auributable to the Aciual = Selector
conditions, in which 56% of the adults but only 13% of the children were
successful. In fact, none of the third graders discovered Selectors For
Counters, adults and children were not as different in their success rates
(88% vs. 75%) .

What about subjects’ reactions to the Given hypothesis? Recall that we
presented subjects with either plausible or implausible hypotheses in order
to determine the extent to which search in the hypothesis space was in-
fluenced by plausihility. This is one of the points at which domain-specific
knowledge (which determines plausibility) might affect domain-general
knowledge about experimental strategies.

Prior to running the first experiment, subjecis were asked to predict what
would happen. Their predictions indicated the extent to which they under-
stood and accepted the Given hypotheses. Each subjects response to the
Given hypothesis was assigned to one of three categories: I, Accept the Given
hypotheses; 11, accept the Given, but also propose an alternative; 1L, reject
the Given, and propose an alternative. The number of subjects in each
category is shown in Table 9.5 as a function of grade level and type of Given
hypothesis. In both conditions, the adults always accepted the Given hy-
pothesis, either on its own (category I), orin conjunction withan alternative
that they proposed (category I1). Adults never rejected the Given hypothesis.
In contrast, no third grader and only two sixth graders ever proposed an
alternative to compare to the Given (category I1). Instead, children consid-
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TABLE 95
Subjects” Responses to the Given Hypothesis

Adults Children
Response to Given Hypothesis Counter Selector Counter Selector
Accept Given 70 60 7l 33
Accept Given and propose alternative 30 40 06 06
Reject given; propose alternative G 0 .23 61

ered only one hypbtheses at a time. When given Counters, they mainly
accepied them, but when given Selectors, they mainly rejected them and
proposed an alternative, which was usuaily a Counter of their own design.

This propensity to consider multiple versus single hypotheses affected the
type of experimenial goals set by the subjects. These goals, in turn, were used
to impose constraints on search in the experiment space. We looked at these
goals more closely by analyzing (a) what subjects said about experiments and
{b) the features of the experiments that they actually wrote. Subjects’ verbal
protocols contain many statements indicating both explicit understanding
of the experiment space dimensions, as well as what might be called a general
notion of “good instrumentation™ designing interpretable programs con-
wining easily identifiable markers. Subjects made explicit statements about
both kinds of knowledge. Here are some typical adult statemnents:

1. "I don't want to have two of the same move in there yet, 1 might
not be able to tell if it was repeating the first one or il it was doing
the next part of my sequence.”

3]

“I'm going 1o use a series of commands that will .. . that are easily
distinguished from one another, and won't run it off the screen ”
3. “So I'm going to pick two [commands] that are the direct opposite
of each other, to see if they don't really have to be direct opposites
but I'm just going to write a program that consists of two steps, that
I could see easily.”

Sixth graders were somewhat less articulate, but still showed a concern
for both experiment space dimensions and program interpretability. In
contrast, third graders rarely made such comments. The proportion of
subjects making such comments is shown in the top row of Table 9.6.

Ata finer level of detail, good instrumentation was assessed by the extent
to which subjects observed three pragmatic constraints: (a) using standard
units of rotation, such as 15 or 30 “minutes” (80 and 180 degrees), for
rotate commands; (b) using small numeric arguments (values <5) on move
commands, so that the actions of BT are not distorted by having it hit the

one hYPo'H't:i 5‘}\5
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TABLE 96
Proportion of Seif-Generated Consumnins

Student Cironj

Canstraint CAIL e Sixth Thint
Explicit 2-N comments 83 &0 53 20
Standard usn wunits 92 895 7 53
Small arguments g2 85 B3 47

Proporstion of programs

in smail® E-space region 30 63 26 31

'

“4x3=5%o0f 13x 15

boundaries of the screen; and (¢} using distinct commands in a program
where possible. Programs constrained in these ways produce behavior that
is easier to observe, encode, and remember. For both turns and moves,
there was a strong effect of grade level

Another interesting difference between the childien and the adulis was
the way in which aduls limited their search to a small “corner” of the
experiment space. We looked at the section of the E-space with A between
1 and 4, and N between 1 and 3. This corresponds to only 5% of the full
E-space. But we discovered that over half of the adults” experiments oc-
curred within this small area. On the other hand, children’s experiments
were much more scattered throughout the space.

Oherall, Table 9.6 shows us that both what subjects said and what they
did produced different patterns for the different groups: Older subjects—
even those with weak technical backgrounds—were better able than chil-
dren to constrain their search in the experiment space and to design
interpretable experiments,

Whatwere subjects trying to do here? Whatwere their experimental goals?
How can we infer these goals from the kinds of experiments they ran? We
reasoned as foilows: If the experimental geal is to identify which of the
program steps are repeated for Selector hypotheses, or to discriminate
berween Selectors and Counters, then subjects should write programs having
more than N steps (i.e., with A > N). (In programs where X is several steps
greater than N, it is easy to distinguish among repeats of all steps, first step,
last step, and N steps.) On the other hand, if the goal is to demonstrate the
effect of a Counter, then subjects should use larger values of N and (for
pragmatic reasons) relatively short programs(i.e , programs with A£ N}. This
all works out to a prediction about the conditions under which A should be
greater than N. Figure 9.6 shows the proportion of subjects in each condition
whose first programs had A > N. Responses of both of the adul: groups and
the sixth graders were consistent with the normative account 1 just gave.
Third graders showed the opposite pattern.
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FIG. 96. A-N on first experiment.
Heuristics for Constraining Search in the Experiment Space

These analyses reveal a distinctive pattern of results that differentiate the
different groups. Qur interpretation of these patterns is that they result
from a set of domain-general heuristics that allow some subjects to constrain
their search in the experiment space. These heuristics are differentially
available to children and adults. Based on these and other analyses, we
have proposed the following four heuristics:

E1  Focus on one dimension of an experiment or hypothesis. An incremental,
conservative approach has been found to be effective in both concept
artainment and hypothesis testing. This heuristic suggests that in moving
from one experiment to the next or one hypothesis to the next one should
decide upon the most important features of each and focus on just those
features Here, the CM adults stood apart from the other three groups.
They were much more likely than any of the three other groups to make
consenative moves—that is, to minimize differences in program content
between one program and the next

E2. Use the plausibility of a hypothesis to choose experimenial strategy In this
study, we found that both children and adults varied their approach to
confirmation and disconfirmation according to the plausibility of the cur-
rently held hypothesis. When hypotheses were plausible, subjects at all
levels tended to set an experimental goal of demonstrating key features
of the given hypothesis, rather than conducting experiments that could
discriminate between rival hypotheses.

For implausibie hypotheses, adults and young children used different
strategies. Adults’ response to implausibility was to propose hypotheses



9 SCIENTIFIC DISCOVERY PROCESSES 343

from frames other than the Given frame, and to conduct experiments that
could discriminate berween them. Our youngest children’s response was
to propose a hypothesis from a different, but plausible, frame and then
to ignore the initial, and implausible, hypothesis while attempting to dem-
onstrate the conectness of the plausible one. Third graders were particu-
larly suscepiible to this strategy.

ES. Maintain observability. As BT moves along the screen it leaves no
permanent record of its behavior. Subjects must remember what BT actu-
ally did. Thus, one way to implement this heuristic is to write short pro-
grams. Adults almost ahiays used it, whereas the youngest children often
wrote programs that were very difficult to encode This heuristic depends
on knowledge of one's own information-processing limitations as well a
knowledge of the device Our finding that the third graders ofien failed
to maintain obsenability may be a manifestation, in the realm of experi-
mental design, of more general findings about the deveiopment of self-
awareness of cognitive limitations.

E4. Design experiments giving characteristic results. This heuristic maximizes
the interpretabilit of experimental outcomes. Physicians look for "mark-
ers” for diseases, and phisicists design experiments in which suspected
particles will leave “signatures.” In the BT domain, this heuristic is instan-
tiated as “use many distinct commands.” On average, about half of all
programs in each group did not contain any repeated commands. However,
because third graders were more likely to use long programs, they were
more likely to use repeated commands, which reduced the possibility of
generating characteristic behavior

Kulkarni and Simon (1988) proposed another heuristic calied Exploit
surprising results They built it into in their computational model of Hans
Krebs' discovery of how amino acids work in the kidney In the BT domain,
it is manifested when subjects replace their current goal--such as tnying to
determine the number of times something gets repeated—with a new goal
of determining why an unexpected program segment was repeated. This
appears to be a very useful way to constrain search in the experiment space,
but in our own studies the evidence for its use is not strong. The data
supporied it in one of our adult studies, but not in subsequent ones.

Although I have described five heuristics for constraining search in the
experiment space, I have not said anything about how they get invoked, or
how their inherent contradictions are handled. For example, E1 calls for
conservative moves, whereas exploiting surprise calls for bold pursuit of a
surprising result. Adults not only used these heuristics effectively, but also
they were able to deal with these inherent contradictions. In contrast,
children either failed to use some of these heuristicsat all, or else they tended
to let one of them dominate. We still have a lot to learn about how this
heuristic conflict is resolved.
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Heuristics for Modifying Hypotheses

These rules help to constrain search in the E-space. But experiments are
supposed o be related to hypotheses, and subjects are supposed to use
the results of experiments to modify their hypotheses. How do they do it?
How should they do it? The overwhelming evidence, from our own research
and from many other labs, is that people seem to follow the following
heuristic for dealing with disconfirming evidence: “Don't give up the ship!”
On the cover of the announcement of the Mind Maiters symposium, the
organizers included, a remarkable quotation from Allen Newell:

Working with theories is not like skeet shooting, where theories are lofted
up and BANG, they are shot down with a falsification bulley, and that's the
end of that theory Theories are more like graduate students, once admited
you try hard to avoid flunking them out, it being much better for them and
for the world if they can become long-term contributors 1o socien . {Newell,
1990}

The statement says as much about Newell the mentor and teacher as
Newell the scientist, but I confine my remarks to the scientific ciaim in the
statement. It bears on a part of the discovery process that remains quite
undeveloped, in the SDDS framework as well as in machine discovery
systems. Just how do people evaluate evidence that bears on their theony?
One thing is clear from our studies and these in other labs: Newell's
statemnent is correct with one modification Although most people like to
treat other people’s theories like clay pigeons, they do treat their own
theories like their own graduate students. They nurture them, tolerate their
failings, and strive mightily to improve them rather thanabandon them. How
do they manage do this while maintaining scientific respectability?

Some people have proposed a Bayesian framework for understanding
the process of evidence interpretation and theory revision (Cheeseman,
1990}, but such approaches do not attempt to get at the underhing psy-
chological processes. The problem is that when you are faced with the
canonical equation for revising your priors, you still have to estimate a
series of conditional probabilities. How do you decide how likely the cur-
rent evidence is, given that one or another hypothesis is true or false?

Chinn and Brewer {199%) noted that most scientific discovery and theory
revision systems assume that when empirical data conflict with the current
theory, it is the theory that must be changed. In contrast, they argue,
psychologists who study how people treat anomalous data have long rec-
ognized that people are pretty good at discounting some anomalies, some
of the time. Chinn and Brewer go on to propose a taxonomy for the
different ways that humans react to anomalous data. I have summarized
their taxonomy in Table 9.7.
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TABLE 97
Psichological Responses to Anemalous Data

Response to Anomealus Date Absut Areept Datu Exprlein Why Change Theory
Theory A ax Valid? Data Aceefted? in Aay Way?
Ignore dam No —_ —
Reject dnin No Yus No
Excinde dam from domain of theory Mavbe Yes No
Hold dam in abeyance Yes No Ne
Reinterpret dam and remin A Yes Yes No
Reinterpret dow and ij'lfiﬂﬁ.,

A A Yes Yes Minor
Accept dat and change:

A~B Yes Yes Yes

Note From Chin and Brewer {1992 Adapred by permission

The taxonomy includes seven kinds of responses to anomalies, which
differ along three dimensions: (a) whether or not the anomalous data are
accepted as valid, (b) whether or not the scientst explains how that judg-
ment (ie., to accept or reject the data) was made, and {¢) whether or not
the theory is changed as a result of the anomalous data. The normative,
"skeet shooting” response is shown in category 7, but the table makes it
clear that it is far from the only possible response. Category 2 is particularly
interesting because it is frequently used when the scientist claims that an
experimental error has occurred. Suppose you know that there is some
probability of false positives ot false negatives in yowr experimental out-
comes. How does that affece the way you interpret the outcomes that do
or don't agree with your predictions? We have been extending earlier work
by Gorman (in press) on this question by presenting subjects with errorful
feedhack that includes both false positives and false negatives, in order to
find out more about how subjects deal with such error (Penner, 1993).

Category 4 is also interesting: Here the scienust accepts the anomaly as
valid, that is, not irrelevant to the domain, and not a fluke of experimental
procedure. However, it is not yet clear what to do about it, other than 1o
hope to come back to it at some point. This category has some of the
properties of Kulkarni’s and Simon's heuristic to exploit surprising results,
for during that exploration, the scientist usually holds on to the current
theory, but stll peruses more information that may bear on it.

Category ¢ also is characteristic of a strategy that another one of my
graduate students, Chris Schunn (Schunn & Klahr, 1992}, found in a more
complex version of BT. He found that when subjects were attempting to
discover a complex but decomposable rule, they would take an unexpected
result and defer pursuing it for a while. He calls it the put upon stack heuristic
(PUSH). Now PUSH and “Exploit surprises” are quite incompatible with
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one another, and at this point we do not know the conditions under which
one or the other will dominate. Nor do we know which of these responses
is favored by children. This remains a promising area for further research.

Young Children as Good Scientists

It is tempting to conclude—from the results of our studies with BT-—that
children simply don't understand the underlying logic of scientific reason-
ing. But consider the results of a recent study by Sodian, Zaitchick, and
Carey {1991). They, gave first and second graders a problem concerning
a mouse in a house, and asked them to distinguish between conclusive
and inconclusive experiments 1o find out something about the mouse. The
story went something like this:

1. A mouse has been eating stuff in the kitchen at night.

2 It is either a big mouse or a little mouse.

3. We have a food box with a little hole, just wide enough for a little
mouse, but too narrow for a big mouse.

4. We have another food box with a big hole, wide enough for either
mouse.

Then the children were asked two guestions (in counterbalanced order):

The Find Oui guestion: Suppose we want to find out which mouse it
is? Which box should we put our?

The Feed question: Suppose we want to be sure that the mouse gets
the food. Which box should we put out?

For the Find Qut question, the correct response is put out the box with
the litle hole: If the food is gone, then the mouse that took it must be
small. If it is not gone, then the big mouse couldn’t get to it. For the Feed
question, the correct answer is to put out the box with the big deor.

The majority of the first graders and most of the second graders gave
the correct answer to both the Find Out question and the Feed guestion.
Thus, the children demonstrated the ability to discriminate between testing
a hypothesis and getting an effect. But notice: There were only two hy-
potheses, they were mutually exclusive and exhaustive, and the children
did not have to search for them. Same thing for experiments. Under such
conditions, even first-grade children show an ability to distinguish theory
from evidence.

So: When do children think “scientifically™® I believe that our analysis,
when combined with the related work from other laboratories, of the kind
I just described, clarifies the conditions under which children’s domain-
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general reasoning skills are adequate to successfully coordinate search for
hypotheses and experiments Even first-grade children can exhibit an un-
derstanding of some basic components of the logic or scientific reasoning
if at least these three conditions are satisfied:

1. Hypotheses muss be easily accessible (such as the highly plausibie
Counters in our study) or few in number (as in the two-alternative
situations used in Carey's lab),

I

The experimental alternatives must alse be few in number so that
E-space search demands are minimized (also as in the mouse experi-
ments) .

8 The domain must provide feedback relevant to discriminating among
plausible hypotheses {as in region 2 experiments in BT studies).

In siwatdons lacking any of these constraints, children will appear to be
very poor scientisis. Notice that this is not just another consequence of
children’s inadequate encoding or mnemonic skills. On the contrary. in
our BT swdies, when experimental outcomes were consistent with chil-
dren’s expectations, they were correctly encoded, even though they were
much Jonger than those incorrectly encoded, but discrepant from chil-
dren’s expectations Instead, the adult superiority appears o derive from
set of domain-general skills that go bevond the logic of confirmation and
disconfirmation and deal with the coordination of search in two spaces

MACHINES AS DISCOVERY SYSTEMS

So far I have talked about two of the three type of discovery systems
mentioned in my tide. Now I turn to the third tvpe: machine discovery
systems. As in many of the domains that have been approached by both
the Al community and the cognitive psychology community, the sirengths
of one approach are the weaknesses of the other The great advantage in
studying humans is that they are obviously capable of making discoveries.
All the great discoveries in the world are made by humans, and just about
nothing of any importance has yet been discovered by a machine. In
contrast, the advantage of focusing on machine discovery systems is that
we know everything there is to know about how they work, because we
built them, whereas we still have a lot to learn about human discavery
systems (both old and young.)

If you look at the existing machine discovery systems in terms of the
SDDS model (Fig 9.1), you find systems that address one or another parts
of the overall process, but nothing that really takes on the entire framework
{see Cheng, 1992). For example, Thagard (1989) constructed a system
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that models the wav in which a body of evidence is evaluated in terms of
currently competing theories His system focused almost entirely on the
Evaluate Evidence process.

But where do hypotheses come from? SDDS proposes two sources. One
source, Search H-Space, relies heavily on analogy {see Shrager & Langley,
1990). For example, both Shrager's {1987) “view application” process and
Falkenhainer's (1990) Phineas system attempt to reason about novel situ-
ations in terms of analogies and partial matches to prior knowledge struc-
tures. Both of these systems, then, correspond o the Fvoke Frame node in
SDDS. The other saurce of new hypotheses is via induction. In many cases
they are induced from regularities in empirical data. This process, which
corresponds to SDDS's Induce Frame node, is the domain of the original
Bacon series, as well as more recent systerns such as Nordhausen and
Langley's (1990} IDA system. But it does not address problems of search in
the experiment space In contrast, both Kulkarni (1989) and Rajamoney
(1990) have proposed systems that propose experiments to discriminate
among candidate hypotheses Each of these systems corresponds to the
“conventional” use of experimentation that is represented in SDDS by the
E-space search in the service of Test Hypothesis. And so on. 1 could continue
this exercise, but the message is clear. There are machine discovery systems
that focus on segments of the overall process shown in Fig. 91, but the
UTD—the unified theory of discovery—is not with us yet

DISCOVERING DISCOVERY PROCESS

Now I move up a level, from a description of how machines or humans
do scientific discovery, to a characterization of the discovery processes used
in the field. My analysis is based on two premises. The first premise is that
the SDDS framework is applicable to any form of scientific discovery. The
second premise is that people engaged in research on discovery processes
are themselves engaged in scienific discovery: They are attempting o
discover the discovery process. From these two premises, it follows that we
can use the dual space concept to characterize our own endeavors,

I believe that most of the effort in the creation of computational models
of discovery takes place in the Generate Frame part of Hypothesis Space
Search That is, the process of constructing such systems can be viewed as
an attempt to evoke frames in the space of hypotheses stated as running
programs. These hypotheses are instantiated as discovery systems, but they
are only weakly constrained by empirical evidence from human perform-
ance. In general, this work is highly analytic: It is based on a normative
analysis of what ought to be the case, with the assumptions derived from
intuition or logic, rather than from induction over a rich database.



9. SCIENTIFIC DISCOVERY PROCESSES 349

What about psvchological studies of scientific reasoning of the type that
I described today? I think that this work is mainly comprised of search in
the space of experiments; moreover, this E-space search is not usually in
the senice of hypothesis testing, but rather it is mainly at the level of either
evoking frames or filling slot values. Most of the effort in my own work
has been focused on empirical studies about the nature of human thinking
in situations that approximate “real” scientfic discovery. So I would put
most of the work from my lab, as well as many of the other psychological
studies on discovery processes, in the regions where we have E-space search
in the service of evoking or refining hypotheses.

Although these two approaches, the H-space and the E-space searches,
start from quite different point, use different search processes, and use
different criteria to evaluate their progress, I think that they are comverging
on the same general discoveries about the discoveryprocess. Indeed, that is
what one would hope for, for our basic premise is that search in the two
spaces should converge toward discovery. In this case, the endty doing the
dual search is the field at large, rather than a single scientist, but 1 see
comergence, nevertheless. ’

DISCOVERY FRONTIERS

One of the many remarkable things about Allen Newell that always im-
pressed me was how cheerfully he could list ail the current inadequacies and
faws in his current position on a topic. | think he could do that because he
had the conviction that, for all its flaws, his game was the best game in town.

In Allen Newell's view, the current limitations of field simply presented
vet another chalienge, and he was always able to put a positive spin on
them. in fact, he ended his book with a chapter that listed things that
Soar had not done. But did he call the chapter "weaknesses and limita-
tions™? Not at all. He callied it "Along the Fronters.” I like that title: Not
only does it imply discoveries yet to be made, but it also captures some of
Allen Newell's enthusiastic optimism. How exciting to be on a frontier! So
in this concluding section, 1 make a few comments about directions in
which I believe that research on scientific reasoning should be extended.

More Space

The SDDS framework emphasis two primary spaces, but it is clear that
scientific discovery takes place in several other spaces:

+ The instrumentation space has been alluded to in my earlier discussions
of how subjecis decide about how to insert markers in their programs, but
in the real scientific context, it is clearly a complex and fundamental space
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in its own right. From high-energs physics to cognitive neuroscience, ad-
vances in instrumentation are at the cutting edge of the science. Machine
discovery svstems do not worry about this much: They asswme that the
data are there, waiting to be analyzed by the discovery system, or else they
postulate an idealized set of experiments to generate such data.

» The representation space has also received short shrift in my account,
although its role is also crucial. Cheng and Simon (1992} argued that “law
induction, and scientific discovery more generally, requires the right rep-
resentation for success,” and they compared the relative difficulty of mathe-
matical and diagramimatic representations in Gallileo’s research Finding
the right representation is crucial, and finding it requires constrained
search in a large space of possibilities

» By communication space, I mean the set of choices that scientists must
make about how to package, disseminate, promote, and defend their sci-
ence, as well as what to read, whom to listen to, what meetings to attend
In many cases, these considerations, of audience, of intended impact, of
how to tie ones work to the existing body of knowledge, have far-reaching
impact on the kind of core science that one does {see Bazerman, 1988,
for a discussion of how publication options impacted Newton's seminal
work on light refracton).

These three do not exhaust the space of spaces Indeed, in a commentary
on our SDDS model Newell (1989) proposed several others for the BigTrak
world and he went on to link these multiple spaces to the “architectural
features of the foothills (of rationality).”

With Soar. we have {inally found out how 1o have multiple problem spaces.
Not one or two problems spaces, but problem spaces all the way down
Furthermore, this is driven by the architecaire—scrach an impasse, get
another problem space. The proliferation of spaces may be modulatable
ever so slightly by deliberation, but not much. Thus, the muttiple problem-
space character of a task is not a strategy choice for an intelligent agent or
even a task charactleristic Muitiple problem spaces are a feature of the
foothills, created by the nature of the cognitive architecture. (p 432)

Complexity and Knowledge

Some machine discovery systems deal with enormously complex “real world”
domains. However, much of the work on discovery—both the construction
of machine discovery systems and the psychological studies of discovery—is
in highly simplified domains. The BigTrak is a pale shadow of the complexity
of domains in which real scientific discovery occurs. Therefore, the question
remains about the extent to which our results would scale up when we move
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o domains in which either prier knowledge or inherent complexin of the
domain is increased

We have been perusing this by looking at people’s reasoning and experi-
mental strategies in domains where they have strong intuitions and biases
about how the physical world works For example, Dmvid Penner and I
(Penner & Klahr, 1993) have been studying how people generate experi-
mentis in order to determine the factors that affect the rate at which objects
sink in water. In a related study in the domain of biology, Kevin Dunbar
{1993a) created a computer-based microworld that captured several impor-
tant features surrounding the discovery of the mechanisms of genetic
control.

In addition to adding more knowledge, we need 1o add more complexity,
At present, most discovery tasks studied in the psychology Iaboratory do
not require subjects to decompose a compiex phenomenon into its com-
ponents in order to inmvestigate them in isolation. However, as I mentioned
carlier, in Chris Schunn’s complex microworld we sometimes do see such
a decomposition of a comptex theory into its components, an independent
imestigation of each components, and then an assembly and integration
of the components into a comprehensive model This behavior does not
reveal itself in simpler discovery experiments because it is not necessary.

But the most ambitious extension of the dualsearch fiame work is an
ongoing study by Kevin Dunbar, who decided to mave far beyond the
microworld tasks into the real werld of world-class scientsts working in
their labs {(Dunbar, 1993b, 1995} . Dunbar spent a year making daily ob-
senations in four different labs working in the arex of molecular biology.
He is using the SDDS framework to structure his obsemations and inter-
pretations of what in happening in an ongoing, collaborative and cutting
edge scientific endeavor. And, of course, he will use these obsenations to
further elaborate the framework itself

This is a very exciting underiaking, as it simulianeously moses along
most of the fronts listed here. Not only does it imolve muliiple spaces,
and more knowledge, but it will also address issues of social context and
motivation, which you can see further down on the list of frontier issues.

Social Context

Clearly, the social context provides a rich source of knowledge and con-
straint in scientific discovery. Cooperation is important. So is competition.
Sociologists and historians focus aimost entirely on processes outside the
individual that shape scientific discovery {Bijker, Hughes, & Pinch, 1987},
but they are silent on the cognitive processes that are involved in this social
exchange. Cognitive psychologists are just beginning to investigate the role
of collaboration in scientific reasoning. But we have a long way to go.
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Motivation

In our own work, we found a curious phenomenon: When we suggest
hypotheses to subjects they are much less likely to believe them, and much
more willing to reject them, than when they generated the very same
hypotheses themselves. The motivation to prove the other person wrong
and to prove oneself right is very strong.

Much of the best work in machine discovery is based on the historical
record of the great scientsts making the great discoveries. But we have been
very selective in extracting information from those historical accounts. Such
accounts are often Tilled with statements about excitement, astonishment,
disappointment, envy, doubt, despair. Are these descriptions of emotional
and motivation states irrelevant to understanding science? I doubt it

Learning

Why does it take so long to train a scientist? Is it all due to the slow learning
rate of humans and the huge amount of content knowledge and specific
techniques necessary to work in a field? Why don't we start earlier then? Is
it because we can't? That i:s, because the kind of domain-general search
constraints are simply not awailable to young children? That is what the
results reported here today imply, but we have a lot more work to do before
we really understand the nature of these cognitive limitations.

Development

All of the discoveries | have been talking about so far are discoveries about
things “out there”: discoveries about devices, or about the planets, or about
the kidney. What about discovery *in here”? When my colleague Bob Siegler
(Siegler & Shipley, 1993) wlks about discovery, he is talking about how
children discover new strategies in doing arithmetic, or solving problems, or
plaving games. To what extent is what we have learned about discovery
processes in the first sense relevant to discovery processes in the second
sense? Is self-awareness of one's own discovery processes a useful skill for the
scientist who is attemnpting to discover something about the world? Do the
same heuristics and search constraints apply? Itis clear that search in a large
space faces those who would discover more about discovery, and our
challenge is to see whether we can effectively constrain that search as we seek
to discover discovery systems
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